Abstract
Originalsprache | englisch |
---|---|
Aufsatznummer | 073101 |
Fachzeitschrift | Journal of statistical mechanics - theory and experiment |
Jahrgang | 2019 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Jul 2019 |
Fingerprint
Schlagwörter
Dies zitieren
On the continuum limit of the entanglement Hamiltonian. / Eisler, Viktor; Tonni, Erik; Peschel, Ingo.
in: Journal of statistical mechanics - theory and experiment, Jahrgang 2019, 073101, 01.07.2019.Publikation: Beitrag in einer Fachzeitschrift › Artikel › Forschung › Begutachtung
}
TY - JOUR
T1 - On the continuum limit of the entanglement Hamiltonian
AU - Eisler, Viktor
AU - Tonni, Erik
AU - Peschel, Ingo
PY - 2019/7/1
Y1 - 2019/7/1
N2 - We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations.
AB - We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations.
KW - cond-mat.stat-mech
KW - hep-th
U2 - 10.1088/1742-5468/ab1f0e
DO - 10.1088/1742-5468/ab1f0e
M3 - Article
VL - 2019
JO - Journal of statistical mechanics - theory and experiment
JF - Journal of statistical mechanics - theory and experiment
SN - 1742-5468
M1 - 073101
ER -