On a problem of Pillai with Fibonacci numbers and powers of 3

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

Consider the sequence $ \{F_{n}\}_{n\geq 0} $ of Fibonacci numbers defined by $ F_0=0 $, $ F_1 =1$ and $ F_{n+2}=F_{n+1}+ F_{n} $ for all $ n\geq 0 $. In this paper, we find all integers $ c $ having at least two representations as a difference between a Fibonacci number and a power of $ 3 $.
Originalspracheenglisch
Seiten (von - bis)1-15
Seitenumfang15
FachzeitschriftBoletín de la Sociedad Matemática Mexicana
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 17 Sep 2019

Fingerprint

Lame number
Integer

Schlagwörter

    ASJC Scopus subject areas

    • !!Algebra and Number Theory

    Dies zitieren

    On a problem of Pillai with Fibonacci numbers and powers of 3. / Ddamulira, Mahadi.

    in: Boletín de la Sociedad Matemática Mexicana, 17.09.2019, S. 1-15.

    Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

    @article{ba2e2d08123248c6918ee3b67e5abab0,
    title = "On a problem of Pillai with Fibonacci numbers and powers of 3",
    abstract = "Consider the sequence $ \{F_{n}\}_{n\geq 0} $ of Fibonacci numbers defined by $ F_0=0 $, $ F_1 =1$ and $ F_{n+2}=F_{n+1}+ F_{n} $ for all $ n\geq 0 $. In this paper, we find all integers $ c $ having at least two representations as a difference between a Fibonacci number and a power of $ 3 $.",
    keywords = "Fibonacci number, Linear forms in logarithms, Baker's method",
    author = "Mahadi Ddamulira",
    note = "Bolet{\'i}n de la Sociedad Matem{\'a}tica Mexicana (2019), 15 pages",
    year = "2019",
    month = "9",
    day = "17",
    doi = "10.1007/s40590-019-00263-1",
    language = "English",
    pages = "1--15",
    journal = "Bolet{\'i}n de la Sociedad Matem{\'a}tica Mexicana",
    issn = "1405-213X",
    publisher = "Springer International Publishing AG",

    }

    TY - JOUR

    T1 - On a problem of Pillai with Fibonacci numbers and powers of 3

    AU - Ddamulira, Mahadi

    N1 - Boletín de la Sociedad Matemática Mexicana (2019), 15 pages

    PY - 2019/9/17

    Y1 - 2019/9/17

    N2 - Consider the sequence $ \{F_{n}\}_{n\geq 0} $ of Fibonacci numbers defined by $ F_0=0 $, $ F_1 =1$ and $ F_{n+2}=F_{n+1}+ F_{n} $ for all $ n\geq 0 $. In this paper, we find all integers $ c $ having at least two representations as a difference between a Fibonacci number and a power of $ 3 $.

    AB - Consider the sequence $ \{F_{n}\}_{n\geq 0} $ of Fibonacci numbers defined by $ F_0=0 $, $ F_1 =1$ and $ F_{n+2}=F_{n+1}+ F_{n} $ for all $ n\geq 0 $. In this paper, we find all integers $ c $ having at least two representations as a difference between a Fibonacci number and a power of $ 3 $.

    KW - Fibonacci number

    KW - Linear forms in logarithms

    KW - Baker's method

    UR - https://arxiv.org/abs/1902.03491

    U2 - 10.1007/s40590-019-00263-1

    DO - 10.1007/s40590-019-00263-1

    M3 - Article

    SP - 1

    EP - 15

    JO - Boletín de la Sociedad Matemática Mexicana

    JF - Boletín de la Sociedad Matemática Mexicana

    SN - 1405-213X

    ER -