Numerical implementation of continuum dislocation dynamics with the discontinuous-Galerkin method

Alireza Ebrahimi*, Mehran Monavari, Thomas Hochrainer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

In the current paper we modify the evolution equations of the simplified continuum dislocation dynamics theory presented in [T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: Towards a physical theory of crystal plasticity. J. Mech. Phys. Solids. (in print)] to account for the nature of the so-called curvature density as a conserved quantity. The derived evolution equations define a dislocation flux based crystal plasticity law, which we present in a fully three-dimensional form. Because the total curvature is a conserved quantity in the theory the time integration of the equations benefit from using conservative numerical schemes. We present a discontinuous Galerkin implementation for integrating the time evolution of the dislocation state and show that this allows simulating the evolution of a single dislocation loop as well as of a distributed loop density on different slip systems.

Originalspracheenglisch
Aufsatznummer605
FachzeitschriftMaterials Research Society Symposium Proceedings
Jahrgang1651
DOIs
PublikationsstatusVeröffentlicht - 2014

ASJC Scopus subject areas

  • Werkstoffwissenschaften (insg.)
  • Physik der kondensierten Materie
  • Maschinenbau
  • Werkstoffmechanik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Numerical implementation of continuum dislocation dynamics with the discontinuous-Galerkin method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren