Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials

Gonçalo L. Sorger, J. P. Oliveira*, Patrick L. Inácio, Norbert Enzinger, Pedro Vilaça, R. M. Miranda, Telmo G. Santos

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

The use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.

Originalspracheenglisch
Seiten (von - bis)360-368
Seitenumfang9
FachzeitschriftJournal of Materials Science and Technology
Jahrgang35
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Mär 2019

ASJC Scopus subject areas

  • !!Ceramics and Composites
  • !!Mechanics of Materials
  • !!Mechanical Engineering
  • !!Polymers and Plastics
  • !!Metals and Alloys
  • !!Materials Chemistry

Fields of Expertise

  • Advanced Materials Science

Fingerprint Untersuchen Sie die Forschungsthemen von „Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren