Non-absolutely irreducible elements in the ring of Integer-valued polynomials

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Let R be a commutative ring with identity. An element (Formula presented.) is said to be absolutely irreducible in R if for all natural numbers n > 1, r n has essentially only one factorization namely (Formula presented.) If (Formula presented.) is irreducible in R but for some n > 1, r n has other factorizations distinct from (Formula presented.) then r is called non-absolutely irreducible. In this paper, we construct non-absolutely irreducible elements in the ring (Formula presented.) of integer-valued polynomials. We also give generalizations of these constructions.

Originalspracheenglisch
Seiten (von - bis)1789-1802
Seitenumfang14
FachzeitschriftCommunications in Algebra
Jahrgang48
Ausgabenummer4
Frühes Online-Datum4 Jan 2020
DOIs
PublikationsstatusVeröffentlicht - 2 Apr 2020

ASJC Scopus subject areas

  • Algebra und Zahlentheorie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Non-absolutely irreducible elements in the ring of Integer-valued polynomials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren