Multi-factorial age estimation from skeletal and dental MRI volumes

Darko Štern, Philipp Kainz, Christian Payer, Martin Urschler*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Age estimation from radiologic data is an important topic in forensic medicine to assess chronological age or to discriminate minors from adults, e.g. asylum seekers lacking valid identification documents. In this work we propose automatic multi-factorial age estimation methods based on MRI data to extend the maximal age range from 19 years, as commonly used for age assessment based on hand bones, up to 25 years, when combined with wisdom teeth and clavicles. Mimicking how radiologists perform age estimation, our proposed method based on deep convolutional neural networks achieves a result of 1.14 \pm 0.96 years of mean absolute error in predicting chronological age. Further, when fine-tuning the same network for majority age classification, we show an improvement in sensitivity of the multi-factorial system compared to solely relying on the hand.

Originalspracheenglisch
TitelMachine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings
Herausgeber (Verlag)Springer-Verlag Italia
Seiten61-69
Seitenumfang9
Band10541 LNCS
ISBN (Print)9783319673882
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017: MLMI 2017 / MICCAI 2017 - Quebec City, Kanada
Dauer: 10 Sep 201710 Sep 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10541 LNCS
ISSN (Print)03029743
ISSN (elektronisch)16113349

Konferenz

Konferenz8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
LandKanada
OrtQuebec City
Zeitraum10/09/1710/09/17

ASJC Scopus subject areas

  • !!Theoretical Computer Science
  • !!Computer Science(all)

Fields of Expertise

  • Information, Communication & Computing

Kooperationen

  • BioTechMed-Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-factorial age estimation from skeletal and dental MRI volumes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren