Modelling Material Flow in Friction Riveting of Polymeric Materials

Goncalo Pina Cipriano, Jorge F. dos Santos, Pedro Vilaça, S.T. Amancio-Filho

Publikation: KonferenzbeitragPosterBegutachtung

Abstract

This work gives a brief introduction to initial finite element models conceived to simulate the plastic deformation of the metallic rivet in polymer parts joined by Force-controlled Friction Riveting. Both the material flow and temperature evolution during the process were considered in the model. The final rivet deformation - i.e. the joint formation - was assessed by a set of measurements as described in literature for physical specimens. Validation of the computational models was performed with established parameters-to-joint formation correlations, based on data acquired via central composite design of experiments (CCD). The experimental maximum widths of the deformed rivet tip (W), were 7.0 mm and 9.3 mm, resulting from an initial diameter of 5 mm. This range of rivet plastic deformation corresponded to an energy-to-deformation efficient range (36- 77 J) of parameters used to produce the physical friction-riveted connections. A good correlation between the computational and the experimental results was achieved. This allows for predictive computational models to be used for joint design, with good estimations on joint tensile strength being drawn from the expected finite element models for joint formation.
Originalspracheenglisch
PublikationsstatusVeröffentlicht - 2018
VeranstaltungThe 12th International Seminar "Numerical Analysis of Weldability" - Schloss Seggau, Seggauberg, Österreich
Dauer: 23 Sept. 201826 Sept. 2018
https://www.tugraz.at/events/seggau/seminar-information/home/

Konferenz

KonferenzThe 12th International Seminar "Numerical Analysis of Weldability"
Land/GebietÖsterreich
OrtSeggauberg
Zeitraum23/09/1826/09/18
Internetadresse

ASJC Scopus subject areas

  • Werkstoffwissenschaften (insg.)

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modelling Material Flow in Friction Riveting of Polymeric Materials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren