Crashmodellentwicklung einer Batteriezelle zum Einsatz in der Fahrzeugentwicklung

Publikation: StudienabschlussarbeitMasterarbeitForschung

Abstract

Der Einsatz der Lithium Ionen Batterietechnologie ist einer der hoffnungsvollsten Kandidaten um die fortschreitende Entwicklung der Elektromobilität zu lancieren. Derzeit sind die erzielten Reichweiten allerdings noch deutlich geringer als bei konventionellen Personenkraftwagen. Die Gewichtsreduktion und die damit verbundene Optimierung von Batteriesystemen hinsichtlich eingesetzte Materialien und Komponenten ist derzeitiges Forschungsinteresse vieler Fahrzeughersteller. Dabei steht die Untersuchung der Auswirkung mechanischer Belastungen auf die Batteriezelle im Vordergrund. Diese Arbeit beschäftigt sich mit der mechanischen Beschreibung einer in der Fahrzeugindustrie eingesetzten zylindrischen Metal Can Batteriezelle im Format 26650. Dazu sind wichtige Informationen rund um das Thema Hybrid- und Elektrofahrzeuge und elektrische Energiespeicher zusammengefasst, sowie in der Literatur bereits vorhandene Ansätze zur Beschreibung mechanischen Verhaltens von zylindrischen Metal Can Zellen ermittelt worden. Anschließend sind Belastungstests und auftretende Mechanismen beim Verformen der Batteriezelle in unterschiedlichen Belastungsrichtungen aufgezeigt und interpretiert worden. Die gewonnenen Kraft / Weg - Charakteristika liefern die Basis für die Erstellung eines Finiten-Elemente-Simulationsmodells der Batteriezelle. Die Verwendung eines Honeycomb-Materialmodells für die aktive Zellmaterialmodellierung ermöglicht es, das richtungsabhängige Verformungsverhalten einer zylindrischen Batteriezelle zu beschreiben. Anhand eines Biegelastfalles sind die Simulationsergebnisse evaluiert und validiert worden. Des Weiteren wurde die Rechenfähigkeit des Simulationsmodells anhand einer Gesamtfahrzeugsimulation bestätigt. Abschließend wurden die Ergebnisse zusammengefasst und die nächsten Schritte zur weiteren Entwicklung des Simulationsmodells der Batteriezelle aufgezeigt.
Titel in ÜbersetzungCrashmodellentwicklung einer Batteriezelle zum Einsatz in der Fahrzeugentwicklung
Originalspracheenglisch
QualifikationMaster of Science
Betreuer/-in / Berater/-in
  • Sattinger, Vinzenz, Betreuer, Externe Person
Datum der Bewilligung20 Jul 2015
PublikationsstatusVeröffentlicht - 29 Mai 2015

Fingerprint

Bending tests
Hybrid vehicles
Electric vehicles
Metals
Automotive industry
Lithium
Ions

Dies zitieren

MODELING OF A FINITE ELEMENT BATTERY CELL FOR THE USAGE IN CRASH VEHICLE DEVELOPMENT. / Wagner, Wolfgang.

2015.

Publikation: StudienabschlussarbeitMasterarbeitForschung

@phdthesis{52d01bdfb63f41d882bf17d5ef10b692,
title = "MODELING OF A FINITE ELEMENT BATTERY CELL FOR THE USAGE IN CRASH VEHICLE DEVELOPMENT",
abstract = "The application of the lithium ion technology is one of the most promising candidates to enforce the development electromobility. At the moment the achievable driving range is still below conventional passenger vehicles. The reduction of weight and the related optimization of the battery system regarding in use materials and components is the aim of present studies of vehicle manufacturers. The investigation of deformation effects occurring under mechanical loads is of major interest. This study is concerned with the mechanical description of the cylindrical metal can battery cell in format 26650, a cell type used in the automobile industry. Therefore necessary information of the topic hybrid and electric vehicle were summarized within this master thesis and present approaches in literature concerning the mechanical deformation behaviour of cylindrical metal can cells were investigated. In the following, load tests and occurring effects during deformation of the battery cell were demonstrated and interpreted. The achieved force / displacement - characteristics provided the basis for the development of a finite-element-model (FEM) simulation of the battery cell. The approach of utilizing a honeycomb material model for characterizing the active cell material has shown to be capable to simulate the anisotropic deformation behaviour of a cylindrical battery cell. The simulation results were evaluated and validated with the help of a three-point bending test. In addition a full vehicle simulation model verified the calculation ability of the battery model. Finally the results were summarized and steps for a further development of the simulation model of the battery cell were demonstrated.",
author = "Wolfgang Wagner",
year = "2015",
month = "5",
day = "29",
language = "English",

}

TY - THES

T1 - MODELING OF A FINITE ELEMENT BATTERY CELL FOR THE USAGE IN CRASH VEHICLE DEVELOPMENT

AU - Wagner, Wolfgang

PY - 2015/5/29

Y1 - 2015/5/29

N2 - The application of the lithium ion technology is one of the most promising candidates to enforce the development electromobility. At the moment the achievable driving range is still below conventional passenger vehicles. The reduction of weight and the related optimization of the battery system regarding in use materials and components is the aim of present studies of vehicle manufacturers. The investigation of deformation effects occurring under mechanical loads is of major interest. This study is concerned with the mechanical description of the cylindrical metal can battery cell in format 26650, a cell type used in the automobile industry. Therefore necessary information of the topic hybrid and electric vehicle were summarized within this master thesis and present approaches in literature concerning the mechanical deformation behaviour of cylindrical metal can cells were investigated. In the following, load tests and occurring effects during deformation of the battery cell were demonstrated and interpreted. The achieved force / displacement - characteristics provided the basis for the development of a finite-element-model (FEM) simulation of the battery cell. The approach of utilizing a honeycomb material model for characterizing the active cell material has shown to be capable to simulate the anisotropic deformation behaviour of a cylindrical battery cell. The simulation results were evaluated and validated with the help of a three-point bending test. In addition a full vehicle simulation model verified the calculation ability of the battery model. Finally the results were summarized and steps for a further development of the simulation model of the battery cell were demonstrated.

AB - The application of the lithium ion technology is one of the most promising candidates to enforce the development electromobility. At the moment the achievable driving range is still below conventional passenger vehicles. The reduction of weight and the related optimization of the battery system regarding in use materials and components is the aim of present studies of vehicle manufacturers. The investigation of deformation effects occurring under mechanical loads is of major interest. This study is concerned with the mechanical description of the cylindrical metal can battery cell in format 26650, a cell type used in the automobile industry. Therefore necessary information of the topic hybrid and electric vehicle were summarized within this master thesis and present approaches in literature concerning the mechanical deformation behaviour of cylindrical metal can cells were investigated. In the following, load tests and occurring effects during deformation of the battery cell were demonstrated and interpreted. The achieved force / displacement - characteristics provided the basis for the development of a finite-element-model (FEM) simulation of the battery cell. The approach of utilizing a honeycomb material model for characterizing the active cell material has shown to be capable to simulate the anisotropic deformation behaviour of a cylindrical battery cell. The simulation results were evaluated and validated with the help of a three-point bending test. In addition a full vehicle simulation model verified the calculation ability of the battery model. Finally the results were summarized and steps for a further development of the simulation model of the battery cell were demonstrated.

M3 - Master's Thesis

ER -