Memory Efficient 3D Integral Volumes

Martin Urschler, Alexander Bornik, Michael Donoser

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Integral image data structures are very useful in computer vision applications that involve machine learning approaches based on ensembles of weak learners. The weak learners often are simply several regional sums of intensities subtracted from each other. In this work we present a memory efficient integral volume data structure, that allows reduction of required RAM storage size in such a supervised learning framework using 3D training data. We evaluate our proposed data structure in terms of the tradeoff between computational effort and storage, and show an application for 3D object detection of liver CT data.
Originalspracheenglisch
TitelIEEE International Conference on Computer Vision Workshops (ICCVW)
UntertitelBig Data in 3D Computer Vision
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten722-729
DOIs
PublikationsstatusVeröffentlicht - 2013

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Memory Efficient 3D Integral Volumes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren