Measurements revealing Challenges in Radar Sensor Modeling for Virtual Validation of Autonomous Driving

Martin Holder, Philpp Rosenberger, Hermann Winner, Thomas D'hondt, Vamsi Prakash Makkapati, Franz Michael Maier, Helmut Schreiber, Zoltan Ferenc Magosi, Zora Slavik, Oliver Bringmann, Wolfgang Rosenstiel

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The virtual validation of automated driving functions requires meaningful simulation models of environment perception sensors such as radar, lidar, and cameras. There does not yet exist an unrivaled standard for perception sensor models, and radar especially lacks modeling approaches that consistently produce realistic results. In this paper, we present measurements that exemplify challenges in the development of meaningful radar sensor models. We highlight three major challenges: multi-path propagation, separability, and sensitivity of radar cross section to the aspect angle. We also review previous work addressing these challenges and suggest further research directions towards meaningful automotive radar simulation models.
Originalspracheenglisch
Titel2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Seiten2616 - 2622
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 4 Nov. 2018
Veranstaltung21st IEEE International Conference on Intelligent Transportation Systems - Maui, Maui, USA / Vereinigte Staaten
Dauer: 4 Nov. 20187 Nov. 2018
https://www.ieee-itsc2018.org/

Konferenz

Konferenz21st IEEE International Conference on Intelligent Transportation Systems
KurztitelITSC 2018
Land/GebietUSA / Vereinigte Staaten
OrtMaui
Zeitraum4/11/187/11/18
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Measurements revealing Challenges in Radar Sensor Modeling for Virtual Validation of Autonomous Driving“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren