Machine Learning Approaches toward Orbital-free Density Functional Theory: Simultaneous Training on the Kinetic Energy Density Functional and Its Functional Derivative

Ralf Meyer, Manuel Weichselbaum, Andreas W. Hauser

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Orbital-free approaches might offer a way to boost the applicability of density functional theory by orders of magnitude in system size. An important ingredient for this endeavor is the kinetic energy density functional. Snyder et al. [ Phys. Rev. Lett. 2012, 108, 253002] presented a machine learning approximation for this functional achieving chemical accuracy on a one-dimensional model system. However, a poor performance with respect to the functional derivative, a crucial element in iterative energy minimization procedures, enforced the application of a computationally expensive projection method. In this work we circumvent this issue by including the functional derivative into the training of various machine learning models. Besides kernel ridge regression, the original method of choice, we also test the performance of convolutional neural network techniques borrowed from the field of image recognition.
Originalspracheenglisch
Seiten (von - bis)5685-5694
Seitenumfang10
FachzeitschriftJournal of Chemical Theory and Computation
Jahrgang16
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - 8 Sept. 2020

ASJC Scopus subject areas

  • Angewandte Informatik
  • Physikalische und Theoretische Chemie

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning Approaches toward Orbital-free Density Functional Theory: Simultaneous Training on the Kinetic Energy Density Functional and Its Functional Derivative“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren