Low-Power Wide-Area technologies as building block for smart sensors in air quality measurements

Titel in Übersetzung: Sensornetzwerk-Technologien als Grundlage für smarte Sensoren bei Messungen der Luftverschmutzung

Markus Knoll*, Philipp Breitegger, Alexander Bergmann

*Korrespondierende/r Autor/in für diese Arbeit

    Publikation: Beitrag in einer FachzeitschriftArtikel

    Abstract

    At present, air pollution monitoring is carried out at low spatial resolution due to high costs, coming along with high accurate measurement equipment. Therefore, to expand the air pollution measurement density, data is fed into dispersion models, which only provide approximate results. To overcome this issue, a much denser sensor network is required, which is directly able to monitor air pollution values. With the emerging technologies in the Wireless Sensor Network (WSN) area, extensive analysis of air pollution can be achieved. Especially Low-Power Wide-Area Networks (LPWAN) such as LoRa, Sigfox or NB-IoT enable smart sensing of wide areas with low power consumption. After introducing why air pollution measurements are indispensable and which pollutants are measured, it is discussed how LPWAN enable dense spatial resolution. Subsequently, the LPWAN technologies LoRa, Sigfox or NB-IoT are introduced and compared. This is followed by distance measurements and a path loss evaluation in the urban area of Graz using LoRa, where we reached communication distances of up to 1.740 m.

    Originalspracheenglisch
    Seiten (von - bis)416-422
    Fachzeitschrifte&i - Elektrotechnik und Informationstechnik
    Jahrgang135
    Ausgabenummer6
    DOIs
    PublikationsstatusVeröffentlicht - Okt 2018

    Schlagwörter

    • air pollution measurement
    • LoRa
    • LPWAN
    • smart sensor
    • WSN

    ASJC Scopus subject areas

    • !!Electrical and Electronic Engineering

    Fingerprint Untersuchen Sie die Forschungsthemen von „Sensornetzwerk-Technologien als Grundlage für smarte Sensoren bei Messungen der Luftverschmutzung“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Dieses zitieren