Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit

F. Schwarz, M. Goldstein, Antonius Dorda, Enrico Arrigoni, A. Weichselbaum, J. Von Delft*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

Originalspracheenglisch
Aufsatznummer155142
FachzeitschriftPhysical Review B
Jahrgang94
Ausgabenummer15
DOIs
PublikationsstatusVeröffentlicht - 27 Okt. 2016

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Physik der kondensierten Materie

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren