Limit points of subsequences

Paolo Leonetti

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Let x be a sequence taking values in a separable metric space and let I be an Fσδ-ideal on the positive integers (in particular, I can be any Erdős–Ulam ideal or any summable ideal). It is shown that the collection of subsequences of x which preserve the set of I-cluster points of x is of second category if and only if the set of I-cluster points of x coincides with the set of ordinary limit points of x; moreover, in this case, it is comeager. The analogue for I-limit points is provided. As a consequence, the collection of subsequences of x which preserve the set of ordinary limit points is comeager.

Originalspracheenglisch
Seiten (von - bis)221-229
Seitenumfang9
FachzeitschriftTopology and its applications
Jahrgang263
DOIs
PublikationsstatusVeröffentlicht - 15 Aug 2019

ASJC Scopus subject areas

  • !!Geometry and Topology

Fingerprint Untersuchen Sie die Forschungsthemen von „Limit points of subsequences“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren