Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle

M. John D. Hayes, Zachary A. Copeland, Paul J. Zsombor-Murray, Anton Gfrerrer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung


A novel algorithm is presented which employs a projective extension of the Euclidean plane to identify the entire one-parameter family of inscribing ellipses, subject to a set of four linear constraints in the plane of the pencil, and directly identifies the area maximising one given any convex quadrangle. In the algorithm, four specified bounding vertices, no three collinear, determine four line equations describing a convex quadrangle. Considering the quadrangle edges as four polar lines enveloping an ellipse, together with one of the corresponding pole points on the ellipse, we define five bounding constraints on the second order equation revealing a description of the pencil of inscribing line conics. This envelope of line conics is then transformed to its point conic dual for visualisation and area maximisation. The ellipse area is optimised with respect to the single pole point and the maximum area inscribing ellipse emerges.

TitelMechanisms and Machine Science
Herausgeber (Verlag)Springer Netherlands
PublikationsstatusVeröffentlicht - 1 Jan 2019


NameMechanisms and Machine Science
ISSN (Print)2211-0984
ISSN (elektronisch)2211-0992



    ASJC Scopus subject areas

    • !!Mechanics of Materials
    • !!Mechanical Engineering

    Dieses zitieren

    Hayes, M. J. D., Copeland, Z. A., Zsombor-Murray, P. J., & Gfrerrer, A. (2019). Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle. in Mechanisms and Machine Science (S. 239-248). (Mechanisms and Machine Science; Band 73). Springer Netherlands.