IoT-based monitoring of environmental conditions to improve the production performance

Oliver Mörth*, Matthias Josef Eder, Lukas Holzegger, Christian Ramsauer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung


In order to ensure long-term competitiveness of a company, an appropriate performance measurement is essential. While the introduction of KPIs focusing on the most important information represents an effective way to monitor and evaluate performance, KPIs do not directly provide reasons behind the current situation. As the strong effects of the environmental conditions in the production area on the human performance has already been proven, their incorporation is important for further production system’s optimization. However, the basis for the required decisions builds the proper providing of relevant information. IoT application are considered as one solution for realizing an efficient and effective monitoring. Therefore, this paper first presents a concept for IoT-based monitoring of environmental conditions in the production area. Fulfilling the defined constraints scalability, adaptability and cost-effectiveness, a corresponding demonstrator has been developed and implemented in the LEAD Factory at Graz University of Technology. The demonstrator successfully enables real-time monitoring of the environmental conditions.
Titel Learning Factories across the value chain – from innovation to service – 10th Conference on Learning Factories 2020
Herausgeber (Verlag)Elsevier B.V.
PublikationsstatusVeröffentlicht - Apr. 2020
Veranstaltung10th Conference on Learning Factories: CLF 2020 - TU Graz, Virtuell, Österreich
Dauer: 15 Apr. 202017 Apr. 2020


NameProcedia Manufacturing
Herausgeber (Verlag)Elsevier B.V.


Konferenz10th Conference on Learning Factories
KurztitelCLF 2020

ASJC Scopus subject areas

  • Artificial intelligence
  • Wirtschaftsingenieurwesen und Fertigungstechnik


Untersuchen Sie die Forschungsthemen von „IoT-based monitoring of environmental conditions to improve the production performance“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren