Hausdorff and packing dimension of Diophantine sets

Publikation: Beitrag in einer FachzeitschriftArtikelForschung

Abstract

Using the variational principle in parametric geometry of numbers, we compute the Hausdorff and packing dimension of Diophantine sets related to exponents of Diophantine approximation, and their intersections. In particular, we extend a result of Jarn\'ik and Besicovitch to intermediate exponents.
Originalspracheundefiniert/unbekannt
FachzeitschriftarXiv.org e-Print archive
PublikationsstatusVeröffentlicht - 17 Apr 2019

Schlagwörter

    Dies zitieren

    Hausdorff and packing dimension of Diophantine sets. / Marnat, Antoine.

    in: arXiv.org e-Print archive, 17.04.2019.

    Publikation: Beitrag in einer FachzeitschriftArtikelForschung

    @article{c9d90076e9f34c5cb0da2dc79d79a3fd,
    title = "Hausdorff and packing dimension of Diophantine sets",
    abstract = "Using the variational principle in parametric geometry of numbers, we compute the Hausdorff and packing dimension of Diophantine sets related to exponents of Diophantine approximation, and their intersections. In particular, we extend a result of Jarn\'ik and Besicovitch to intermediate exponents.",
    keywords = "math.NT",
    author = "Antoine Marnat",
    year = "2019",
    month = "4",
    day = "17",
    language = "undefiniert/unbekannt",
    journal = "arXiv.org e-Print archive",
    publisher = "Cornell University Library",

    }

    TY - JOUR

    T1 - Hausdorff and packing dimension of Diophantine sets

    AU - Marnat, Antoine

    PY - 2019/4/17

    Y1 - 2019/4/17

    N2 - Using the variational principle in parametric geometry of numbers, we compute the Hausdorff and packing dimension of Diophantine sets related to exponents of Diophantine approximation, and their intersections. In particular, we extend a result of Jarn\'ik and Besicovitch to intermediate exponents.

    AB - Using the variational principle in parametric geometry of numbers, we compute the Hausdorff and packing dimension of Diophantine sets related to exponents of Diophantine approximation, and their intersections. In particular, we extend a result of Jarn\'ik and Besicovitch to intermediate exponents.

    KW - math.NT

    M3 - Artikel

    JO - arXiv.org e-Print archive

    JF - arXiv.org e-Print archive

    ER -