Graphs with large total angular resolution

Oswin Aichholzer, Matias Korman, Yoshio Okamoto, Irene Maria De Parada, Daniel Perz, André van Renssen, Birgit Vogtenhuber

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The total angular resolution of a straight-line drawing is the minimum angle between two edges of the drawing. It combines two properties contributing to the readability of a drawing: the angular resolution, which is the minimum angle between incident edges, and the crossing resolution, which is the minimum angle between crossing edges. We consider the total angular resolution of a graph, which is the maximum total angular resolution of a straight-line drawing of this graph. We prove that, up to a finite number of well specified exceptions of constant size, the number of edges of a graph with n vertices and a total angular resolution greater than 60° is bounded by 2n−6. This bound is tight. In addition, we show that deciding whether a graph has total angular resolution at least 60° is NP-hard.
Originalspracheenglisch
TitelGraph Drawing and Network Visualization
Herausgeber (Verlag)Springer, Cham
KapitelQuality Metrics
Seiten193-199
Seitenumfang7
ISBN (elektronisch)978-3-030-35802-0
ISBN (Print)978-3-030-35801-3
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung27th International Symposium on Graph Drawing and Network Visualization: GD 2019 - Hotel Floret, Pruhonice, Tschechische Republik
Dauer: 17 Sep. 201920 Sep. 2019
https://kam.mff.cuni.cz/gd2019/index.html
https://kam.mff.cuni.cz/gd2019/

Publikationsreihe

NameLecture Notes in Computer Science
Herausgeber (Verlag)Springer, Cham
Nummer11904
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz27th International Symposium on Graph Drawing and Network Visualization
KurztitelGD 2019
Land/GebietTschechische Republik
OrtPruhonice
Zeitraum17/09/1920/09/19
Internetadresse

Dieses zitieren