Abstract
The total angular resolution of a straight-line drawing is the minimum angle between two edges of the drawing. It combines two properties contributing to the readability of a drawing: the angular resolution, which is the minimum angle between incident edges, and the crossing resolution, which is the minimum angle between crossing edges. We consider the total angular resolution of a graph, which is the maximum total angular resolution of a straight-line drawing of this graph. We prove that, up to a finite number of well specified exceptions of constant size, the number of edges of a graph with n vertices and a total angular resolution greater than 60° is bounded by 2n−6. This bound is tight. In addition, we show that deciding whether a graph has total angular resolution at least 60° is NP-hard.
Originalsprache | englisch |
---|---|
Titel | Graph Drawing and Network Visualization |
Herausgeber (Verlag) | Springer, Cham |
Kapitel | Quality Metrics |
Seiten | 193-199 |
Seitenumfang | 7 |
ISBN (elektronisch) | 978-3-030-35802-0 |
ISBN (Print) | 978-3-030-35801-3 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | 27th International Symposium on Graph Drawing and Network Visualization: GD 2019 - Hotel Floret, Pruhonice, Tschechische Republik Dauer: 17 Sep. 2019 → 20 Sep. 2019 https://kam.mff.cuni.cz/gd2019/index.html https://kam.mff.cuni.cz/gd2019/ |
Publikationsreihe
Name | Lecture Notes in Computer Science |
---|---|
Herausgeber (Verlag) | Springer, Cham |
Nummer | 11904 |
ISSN (Print) | 0302-9743 |
ISSN (elektronisch) | 1611-3349 |
Konferenz
Konferenz | 27th International Symposium on Graph Drawing and Network Visualization |
---|---|
Kurztitel | GD 2019 |
Land/Gebiet | Tschechische Republik |
Ort | Pruhonice |
Zeitraum | 17/09/19 → 20/09/19 |
Internetadresse |