Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-To-car rear scenario. To assess the criticality of each test scenario we rely on time-To-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.

Originalspracheenglisch
TitelProceedings - 19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten418-425
Seitenumfang8
ISBN (elektronisch)9781728139272
DOIs
PublikationsstatusVeröffentlicht - 1 Jul 2019
Extern publiziertJa
Veranstaltung19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019 - Sofia, Bulgarien
Dauer: 22 Jul 201926 Jul 2019

Publikationsreihe

NameProceedings - 19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019

Konferenz

Konferenz19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019
LandBulgarien
OrtSofia
Zeitraum22/07/1926/07/19

ASJC Scopus subject areas

  • Software
  • !!Safety, Risk, Reliability and Quality

Fingerprint Untersuchen Sie die Forschungsthemen von „Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren

    Kluck, F., Zimmermann, M., Wotawa, F., & Nica, M. (2019). Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing. in Proceedings - 19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019 (S. 418-425). [8854708] (Proceedings - 19th IEEE International Conference on Software Quality, Reliability and Security, QRS 2019). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/QRS.2019.00058