From Local to Global Random Regression Forests: Exploring Anatomical Landmark Localization

Darko Stern, Thomas Ebner, Martin Urschler

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtBegutachtung

Abstract

State of the art anatomical landmark localization algorithms pair local Random Forest (RF) detection with disambiguation of locally similar structures by including high level knowledge about relative landmark locations. In this work we pursue the question, how much high-level knowledge is needed in addition to a single landmark localization RF to implicitly model the global configuration of multiple, potentially ambiguous landmarks. We further propose a novel RF localization algorithm that distinguishes locally similar structures by automatically identifying them, exploring the back-projection of the response from accurate local RF predictions. In our experiments we show that this approach achieves competitive results in single and multi-landmark localization when applied to 2D hand radiographic and 3D teeth MRI data sets. Additionally, when combined with a simple Markov Random Field model, we are able to outperform state of the art methods.
Originalspracheenglisch
TitelMedical Image Computing and Computer-Assisted Intervention – MICCAI 2016
Untertitel19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II
Redakteure/-innenSebastien Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, William Wells
Herausgeber (Verlag)Springer International Publishing AG
Seiten221-229
Seitenumfang9
Band9901
ISBN (elektronisch)978-3-319-46723-8
ISBN (Print)978-3-319-46722-1
DOIs
PublikationsstatusVeröffentlicht - 21 Okt 2016
Veranstaltung19th International Conference on Medical Image Computing & Computer Assisted Intervention: MICCAI 2016 - Intercontinental Athenaeum, Athens, Griechenland
Dauer: 17 Okt 201621 Okt 2016
http://www.miccai2016.org

Publikationsreihe

NameLecture Notes in Computer Science
Herausgeber (Verlag)Springer

Konferenz

Konferenz19th International Conference on Medical Image Computing & Computer Assisted Intervention
KurztitelMICCAI
LandGriechenland
OrtAthens
Zeitraum17/10/1621/10/16
Internetadresse

Fields of Expertise

  • Information, Communication & Computing

Kooperationen

  • BioTechMed-Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „From Local to Global Random Regression Forests: Exploring Anatomical Landmark Localization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren