First-principles interpretation of attosecond time-resolved XUV absorption spectroscopy of laser excited Silicon

C. D. Pemmaraju, S. Sato, K. Yabana, Krupa Ramasesha, M. Schultze, Stephen R. Leone, David Prendergast

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

The availability of ultrafast x-ray pulses both from powerful free electron laser light-sources as well as table top high-harmonic generation, has significantly enhanced the utility of core-level spectroscopies as probes for investigating dynamical processes in functional materials. Theoretical approaches to complement these time-domain experiments are therefore actively being developed. In this study we employ a combination of real-time time-dependent density functional theory (TDDFT), occupancy-constrained density functional theory and many-body perturbation theory approaches to help interpret spectral signatures observed in attosecond time-resolved core-level spectroscopic measurements on laser-excited silicon. Using non-equilibrium electron-hole densities obtained from real-time TDDFT simulations of the valence electronic structure we estimate the transient modulation of L-edge absorption in femtosecond infrared pump - attosecond XUV probe experiments. We further estimate the contribution of electron-phonon and electron-electron scattering mechanisms to the lifetime broadening observed in measured L-edge spectra using occupation-constrained density functional theory and GW calculations respectively.
Originalspracheenglisch
TitelAPS March Meeting 2015
SeitenA15.001
PublikationsstatusVeröffentlicht - Mär 2015
Extern publiziertJa
VeranstaltungAPS March Meeting 2015 - San Antonio, Texas, USA / Vereinigte Staaten
Dauer: 2 Mär 20156 Mär 2015

Konferenz

KonferenzAPS March Meeting 2015
LandUSA / Vereinigte Staaten
OrtSan Antonio, Texas
Zeitraum2/03/156/03/15

Fields of Expertise

  • Advanced Materials Science

Fingerprint Untersuchen Sie die Forschungsthemen von „First-principles interpretation of attosecond time-resolved XUV absorption spectroscopy of laser excited Silicon“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren