Field experience of small quasi-DC bias on power transformers: A first classification of low-frequency current patterns and identification of sources

Dennis Albert*, Philipp Schachinger, Herwig Renner, Peter Hamberger, Franz Klammler, Georg Achleitner

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Low-frequency currents (LFC) or quasi-DC (QDC) in the electrical power transmission network, and especially in power transformers, are causing negative effects such as an increase in noise level, in reactive power consumption and in power losses. Currently, no classification of LFC is available to identify a possible source. In order to identify the origin of undesired LFC, classifications of LFC in current and audio measurements are defined. They are based on a spectrum analysis of current and audio measurements. These classifications are successfully tested in laboratory and field measurements. Consequently, LFC sources are identified by field and laboratory measurements and analytical approaches. For power transformer operators, a user-friendly and fast method is presented to identify LFC in the transformers. The method is based on audible measurements and serves as a first estimator for low-frequency currents in power transformers.

Originalspracheenglisch
TitelCigre 2020 Session
Seiten427-436
Seitenumfang10
Band137
DOIs
PublikationsstatusVeröffentlicht - Dez 2020
VeranstaltungCIGRE e-session 2020 - Virtuell, Frankreich
Dauer: 24 Aug 20203 Sep 2020
https://www.cigre.org/GB/events/cigre-e_session

Publikationsreihe

NameElektrotechnik und Informationstechnik
Herausgeber (Verlag)Springer Wien
ISSN (Print)0932-383X

Konferenz

KonferenzCIGRE e-session 2020
LandFrankreich
OrtVirtuell
Zeitraum24/08/203/09/20
Internetadresse

ASJC Scopus subject areas

  • Energieanlagenbau und Kraftwerkstechnik
  • Elektrotechnik und Elektronik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Field experience of small quasi-DC bias on power transformers: A first classification of low-frequency current patterns and identification of sources“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren