Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs

Zeno Jonke, Robert Legenstein, Stefan Habenschuss, Wolfgang Maass

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

Cortical microcircuits are very complex networks, but they are composed of a relatively small number of stereotypical motifs. Hence, one strategy for throwing light on the computational function of cortical microcircuits is to analyze emergent computational properties of these stereotypical microcircuit motifs. We are addressing here the question how spike timing-dependent plasticity shapes the computational properties of one motif that has frequently been studied experimentally: interconnected populations of pyramidal cells and parvalbumin-positive inhibitory cells in layer 2/3. Experimental studies suggest that these inhibitory neurons exert some form of divisive inhibition on the pyramidal cells. We show that this data-based form of feedback inhibition, which is softer than that of winner-take-all models that are commonly considered in theoretical analyses, contributes to the emergence of an important computational function
through spike timing-dependent plasticity: The capability to disentangle superimposed firing patterns in upstream networks, and to represent their information content through a sparse assembly code.
Originalspracheenglisch
Seiten (von - bis)8511– 8523
Seitenumfang24
FachzeitschriftThe journal of neuroscience
Jahrgang37
Ausgabenummer35
DOIs
PublikationsstatusVeröffentlicht - 30 Aug 2017

Schlagwörter

    Fields of Expertise

    • Information, Communication & Computing

    Fingerprint Untersuchen Sie die Forschungsthemen von „Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren