Fast-robust PCA

Markus Storer, Peter Roth, Martin Urschler, Horst Bischof

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

Principal Component Analysis (PCA) is a powerful and widely used tool in Computer Vision and is applied, e.g., for dimensionality reduction. But as a drawback, it is not robust to outliers. Hence, if the input data is corrupted, an arbitrarily wrong representation is obtained. To overcome this problem, various methods have been proposed to robustly estimate the PCA coefficients, but these methods are computationally too expensive for practical applications. Thus, in this paper we propose a novel fast and robust PCA (FR-PCA), which drastically reduces the computational effort. Moreover, more accurate representations are obtained. In particular, we propose a two-stage outlier detection procedure, where in the first stage outliers are detected by analyzing a large number of smaller subspaces. In the second stage, remaining outliers are detected by a robust least-square fitting. To show these benefits, in the experiments we evaluate the FR-PCA method for the task of robust image reconstruction on the publicly available ALOI database. The results clearly show that our approach outperforms existing methods in terms of accuracy and speed when processing corrupted data.
Originalspracheenglisch
TitelImage Analysis
Untertitel16th Scandinavian Conference, SCIA 2009, Oslo, Norway, June 15-18, 2009. Proceedings
Redakteure/-innenArnt-Børre Salberg, Jon Y. Hardeberg, Robert Jensen
ErscheinungsortBerlin Heidelberg
Herausgeber (Verlag)Springer
Seiten430-439
Band5575
ISBN (elektronisch)978-3-642-02230-2
ISBN (Print)978-3-642-02229-6
DOIs
PublikationsstatusVeröffentlicht - 2009

Fields of Expertise

  • Information, Communication & Computing

Fingerprint Untersuchen Sie die Forschungsthemen von „Fast-robust PCA“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren