Estimation of Gait Parameters from EEG Source Oscillations

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Long-term impairment, disability and handicap are major issues after stroke. A wide range of interventions have been developed that aim to promote motor recovery in affected persons. High-intensity and task-specific training protocols show promising results. A better understanding of brain functioning in the context of motor learning and motor control may help to further improve rehabilitation outcome. Mobile brain imaging has brought advances that led to the development of models that characterize different aspects of the cortical involvement in movement. We are interested in translating those findings into online applications and lay a basis for novel rehabilitation interventions. In this paper, we use a model of gait consisting of two parameters: The state of walking (compared to upright standing) and the dynamics of the movement, i.e. the gait cadence. To this end, we perform mobile electroencephalography (EEG) measurements combined with inverse brain imaging and time-frequency analyses optimized for online application.
Originalspracheenglisch
TitelSystems, Man, and Cybernetics (SMC)
Herausgeber (Verlag)IEEE Computer Society
Seiten004182 - 004187
ISBN (elektronisch)978-1-5090-1897-0
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung2016 IEEE International Conference on Systems, Man, and Cybernetics - Budapest, Ungarn
Dauer: 9 Okt 201612 Okt 2016

Konferenz

Konferenz2016 IEEE International Conference on Systems, Man, and Cybernetics
LandUngarn
OrtBudapest
Zeitraum9/10/1612/10/16

Fields of Expertise

  • Human- & Biotechnology

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimation of Gait Parameters from EEG Source Oscillations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren