Entanglement negativity in two-dimensional free lattice models

Viktor Eisler, Zoltán Zimborás

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We study the scaling properties of the ground-state entanglement between finite subsystems of infinite two-dimensional free lattice models, as measured by the logarithmic negativity. For adjacent regions with a common boundary, we observe that the negativity follows a strict area law for a lattice of harmonic oscillators, whereas for fermionic hopping models the numerical results indicate a multiplicative logarithmic correction. In this latter case we conjecture a formula for the prefactor of the area-law violating term, which is entirely determined by the geometries of the Fermi surface and the boundary between the subsystems. The conjecture is tested against numerical results and a good agreement is found.

Originalspracheenglisch
Aufsatznummer115148
FachzeitschriftPhysical Review B
Jahrgang93
Ausgabenummer11
DOIs
PublikationsstatusVeröffentlicht - 31 Mär 2016

ASJC Scopus subject areas

  • Physik der kondensierten Materie
  • Elektronische, optische und magnetische Materialien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Entanglement negativity in two-dimensional free lattice models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren