Enhanced ionisation of polyatomic molecules in intense laser pulses is due to energy upshift and field coupling of multiple orbitals

Sonia Erattupuzha, Cody L. Covington, Arthur Russakoff, Erik Lötstedt, Seyedreza Larimian, Václav Hanus, Sergiy Bubin, Markus Koch, Stefanie Gräfe, Andrius Baltuška, Xinhua Xie, Kaoru Yamanouchi, Kálmán Varga, Markus Kitzler*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We present the results of a combined experimental and numerical study on strong-field ionisation of acetylene performed with the aim of identifying the mechanism behind the previously reported surprisingly large multi-electron ionisation probabilities of polyatomic molecules. Using coincidence momentum imaging techniques and time-dependent density functional simulations, we show that the reported efficient ionisation is due to the combined action of a significant geometrically induced energy upshift of the most relevant valence orbitals as the C-H distance stretches beyond about two times the equilibrium distance, and a strong increase in the coupling between multiple molecular orbitals concomitant with this stretch motion. The identified enhanced ionisation mechanism, which we refer to as EIC-MOUSE, is only effective for molecules aligned close to parallel to the laser polarisation direction, and is inhibited for perpendicularly aligned molecules because of a suppression of the C-H stretch motion during the onset of ionisation.

Originalspracheenglisch
Aufsatznummer125601
Seitenumfang18
FachzeitschriftJournal of Physics / B
Jahrgang50
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 31 Mai 2017

ASJC Scopus subject areas

  • !!Atomic and Molecular Physics, and Optics
  • !!Condensed Matter Physics

Fields of Expertise

  • Advanced Materials Science

Fingerprint Untersuchen Sie die Forschungsthemen von „Enhanced ionisation of polyatomic molecules in intense laser pulses is due to energy upshift and field coupling of multiple orbitals“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren