Energy on Spheres and Discreteness of Minimizing Measures

Ryan William Matzke, Dmitriy Bilyk, Oleksandr Vlasiuk, Alexey Glazyrin, Josiah Park

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In the present paper we study the minimization of energy integrals on the sphere with a focus on an interesting clustering phenomenon: for certain types of potentials, optimal measures are discrete or are supported on small sets. In particular, we prove that the support of any minimizer of the p-frame energy has empty interior whenever p is not an even integer. A similar effect is also demonstrated for energies with analytic potentials which are not positive definite. In addition, we establish the existence of discrete minimizers for a large class of energies, which includes energies with polynomial potentials.
FachzeitschriftJournal of Functional Analysis
PublikationsstatusVeröffentlicht - 1 Juni 2021


Untersuchen Sie die Forschungsthemen von „Energy on Spheres and Discreteness of Minimizing Measures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren