Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant escherichia coli coexpressing monooxygenase and epoxide hydrolase

Shuke Wu, Yongzheng Chen, Yi Xu, Aitao Li, Qisong Xu, Anton Glieder, Zhi Li*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Cascade biocatalysis via intracellular epoxidation and hydrolysis was developed as a green and efficient method for enantioselective dihydroxylation of aryl olefins to prepare chiral vicinal diols in high ee and high yield. Escherichia coli (SSP1) coexpressing styrene monooxygenase (SMO) and epoxide hydrolase SpEH was developed as a simple and efficient biocatalyst for S-enantioselective dihydroxylation of terminal aryl olefins 1a–15a to give (S)-vicinal diols 1c–15c in high ee (97.5–98.6% for 10 diols; 92.2–93.9% for 3 diols) and high yield (91–99% for 6 diols; 86–88% for 2 diols; 67% for 3 diols). Combining SMO and epoxide hydrolase StEH showing complementary regioselectivity to SpEH as a biocatalyst for the cascade biocatalysis gave rise to R-enantioselective dihydroxylation of aryl olefins, being the first example of this kind of reversing the overall enantioselectivity of cascade biocatalysis. E. coli (SST1) coexpressing SMO and StEH was also engineered as a green and efficient biocatalyst for R-dihydroxylation of terminal aryl olefins 1a–15a to give (R)-vicinal diols 1c–15c in high ee (94.2–98.2% for 7 diols; 84.2–89.9% for 6 diols) and high yield (90–99% for 6 diols; 85–89% for 5 diols; 65% for 1 diol). E. coli (SSP1) and E. coli (SST1) catalyzed the trans-dihydroxylation of trans-aryl olefin 16a and cis-aryl olefin 17a with excellent and complementary stereoselectivity, giving each of the four stereoisomers of 1-phenyl-1,2-propanediol 16c in high ee and de, respectively. Both strains catalyzed the trans-dihydroxylation of aryl cyclic olefins 18a and 19a to afford the same trans-cyclic diols (1R,2R)-18c and (1R,2R)-19c, respectively, in excellent ee and de. This type of cascade biocatalysis provides a tool that is complementary to Sharpless dihydroxylation, accepting cis-alkene and offering enantioselective trans-dihydroxylation.
Originalspracheenglisch
Seiten (von - bis)409-420
FachzeitschriftACS Catalysis
Jahrgang4
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2014

Fields of Expertise

  • Human- & Biotechnology

Treatment code (Nähere Zuordnung)

  • Experimental

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant escherichia coli coexpressing monooxygenase and epoxide hydrolase“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren