Effect of sulfate on magnesium incorporation in low-magnesium calcite

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

The incorporation of magnesium and sulfate in calcite is frequently used to characterize and trace the environmental conditions occurring during carbonate mineral formation. Although both ions are simultaneously incorporated in the growing calcite, the effect of sulfate on magnesium incorporation in calcite is still under-explored. In this study, we examine the Mg incorporation in low-Mg calcite as a function of growth rate at 25 °C and 1 bar pCO2 in the presence and absence of aqueous sulfate. The obtained results suggest that high calcite growth rates induce a significant increase in the partitioning coefficient of Mg between the precipitated low-Mg calcite and aqueous solution (i.e. DMg= [Formula presented] ). Obtained DMg values exhibit similar dependence to mineral growth rate for experiments performed in the presence and absence of sulfate, however a systematic shift to lower DMg values is observed for calcites formed in the presence of sulfate. The lower DMg values of calcites formed in sulfate-bearing solutions are attributed to the incorporated SO4 ions which provoke expansion in the unit cell along the c-axis of the newly formed calcite. A larger unit cell is unfavorable for the substitution of Ca by smaller Mg ions in calcite. The coupled effect of (i) sulfate uptake during calcite growth and (ii) precipitation rate on DMg can be expressed by the equation DMg=0.03726-0.02345×-logrp-7-XSO4×0.004607+0.002109×-logrp-7; (−8 ≤ log(rp) ≤ −7; 0 ≤ Xso4 ≤ 2.6; T = 25 °C) and is valid for 0.01 ≤ DMg ≤ 0.04. In analogy to Mg also SO4 ions are inhibiting calcite growth, thus promoting the formation of aragonite due to adsorption phenomena and blocking of calcite surface sites. These results improve our understanding on physicochemical parameters controlling CaCO3 composition and mineral polymorphism and are discussed in their relevance for the use of magnesium and sulfate environmental proxies in natural surroundings.

Originalspracheenglisch
Seiten (von - bis)505-519
Seitenumfang15
FachzeitschriftGeochimica et Cosmochimica Acta
Jahrgang265
DOIs
PublikationsstatusVeröffentlicht - 15 Nov 2019

Fingerprint

Calcium Carbonate
Magnesium
Sulfates
magnesium
calcite
sulfate
Ions
Magnesium Sulfate
ion
incorporation
effect
Minerals
mineral
Bearings (structural)
Carbonate minerals
aragonite
Polymorphism
polymorphism
substitution
partitioning

Schlagwörter

    ASJC Scopus subject areas

    • !!Geochemistry and Petrology

    Dies zitieren

    Effect of sulfate on magnesium incorporation in low-magnesium calcite. / Goetschl, Katja E.; Purgstaller, Bettina; Dietzel, Martin; Mavromatis, Vasileios.

    in: Geochimica et Cosmochimica Acta, Jahrgang 265, 15.11.2019, S. 505-519.

    Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

    @article{5569d5e5b0384b9bac720054e1b03149,
    title = "Effect of sulfate on magnesium incorporation in low-magnesium calcite",
    abstract = "The incorporation of magnesium and sulfate in calcite is frequently used to characterize and trace the environmental conditions occurring during carbonate mineral formation. Although both ions are simultaneously incorporated in the growing calcite, the effect of sulfate on magnesium incorporation in calcite is still under-explored. In this study, we examine the Mg incorporation in low-Mg calcite as a function of growth rate at 25 °C and 1 bar pCO2 in the presence and absence of aqueous sulfate. The obtained results suggest that high calcite growth rates induce a significant increase in the partitioning coefficient of Mg between the precipitated low-Mg calcite and aqueous solution (i.e. DMg= [Formula presented] ). Obtained DMg values exhibit similar dependence to mineral growth rate for experiments performed in the presence and absence of sulfate, however a systematic shift to lower DMg values is observed for calcites formed in the presence of sulfate. The lower DMg values of calcites formed in sulfate-bearing solutions are attributed to the incorporated SO4 ions which provoke expansion in the unit cell along the c-axis of the newly formed calcite. A larger unit cell is unfavorable for the substitution of Ca by smaller Mg ions in calcite. The coupled effect of (i) sulfate uptake during calcite growth and (ii) precipitation rate on DMg can be expressed by the equation DMg=0.03726-0.02345×-logrp-7-XSO4×0.004607+0.002109×-logrp-7; (−8 ≤ log(rp) ≤ −7; 0 ≤ Xso4 ≤ 2.6; T = 25 °C) and is valid for 0.01 ≤ DMg ≤ 0.04. In analogy to Mg also SO4 ions are inhibiting calcite growth, thus promoting the formation of aragonite due to adsorption phenomena and blocking of calcite surface sites. These results improve our understanding on physicochemical parameters controlling CaCO3 composition and mineral polymorphism and are discussed in their relevance for the use of magnesium and sulfate environmental proxies in natural surroundings.",
    keywords = "Low-Mg calcite, Mg partitioning, Mineral growth rate, Sulfate incorporation, Unit cell expansion",
    author = "Goetschl, {Katja E.} and Bettina Purgstaller and Martin Dietzel and Vasileios Mavromatis",
    year = "2019",
    month = "11",
    day = "15",
    doi = "10.1016/j.gca.2019.07.024",
    language = "English",
    volume = "265",
    pages = "505--519",
    journal = "Geochimica et Cosmochimica Acta",
    issn = "0016-7037",
    publisher = "Elsevier Limited",

    }

    TY - JOUR

    T1 - Effect of sulfate on magnesium incorporation in low-magnesium calcite

    AU - Goetschl, Katja E.

    AU - Purgstaller, Bettina

    AU - Dietzel, Martin

    AU - Mavromatis, Vasileios

    PY - 2019/11/15

    Y1 - 2019/11/15

    N2 - The incorporation of magnesium and sulfate in calcite is frequently used to characterize and trace the environmental conditions occurring during carbonate mineral formation. Although both ions are simultaneously incorporated in the growing calcite, the effect of sulfate on magnesium incorporation in calcite is still under-explored. In this study, we examine the Mg incorporation in low-Mg calcite as a function of growth rate at 25 °C and 1 bar pCO2 in the presence and absence of aqueous sulfate. The obtained results suggest that high calcite growth rates induce a significant increase in the partitioning coefficient of Mg between the precipitated low-Mg calcite and aqueous solution (i.e. DMg= [Formula presented] ). Obtained DMg values exhibit similar dependence to mineral growth rate for experiments performed in the presence and absence of sulfate, however a systematic shift to lower DMg values is observed for calcites formed in the presence of sulfate. The lower DMg values of calcites formed in sulfate-bearing solutions are attributed to the incorporated SO4 ions which provoke expansion in the unit cell along the c-axis of the newly formed calcite. A larger unit cell is unfavorable for the substitution of Ca by smaller Mg ions in calcite. The coupled effect of (i) sulfate uptake during calcite growth and (ii) precipitation rate on DMg can be expressed by the equation DMg=0.03726-0.02345×-logrp-7-XSO4×0.004607+0.002109×-logrp-7; (−8 ≤ log(rp) ≤ −7; 0 ≤ Xso4 ≤ 2.6; T = 25 °C) and is valid for 0.01 ≤ DMg ≤ 0.04. In analogy to Mg also SO4 ions are inhibiting calcite growth, thus promoting the formation of aragonite due to adsorption phenomena and blocking of calcite surface sites. These results improve our understanding on physicochemical parameters controlling CaCO3 composition and mineral polymorphism and are discussed in their relevance for the use of magnesium and sulfate environmental proxies in natural surroundings.

    AB - The incorporation of magnesium and sulfate in calcite is frequently used to characterize and trace the environmental conditions occurring during carbonate mineral formation. Although both ions are simultaneously incorporated in the growing calcite, the effect of sulfate on magnesium incorporation in calcite is still under-explored. In this study, we examine the Mg incorporation in low-Mg calcite as a function of growth rate at 25 °C and 1 bar pCO2 in the presence and absence of aqueous sulfate. The obtained results suggest that high calcite growth rates induce a significant increase in the partitioning coefficient of Mg between the precipitated low-Mg calcite and aqueous solution (i.e. DMg= [Formula presented] ). Obtained DMg values exhibit similar dependence to mineral growth rate for experiments performed in the presence and absence of sulfate, however a systematic shift to lower DMg values is observed for calcites formed in the presence of sulfate. The lower DMg values of calcites formed in sulfate-bearing solutions are attributed to the incorporated SO4 ions which provoke expansion in the unit cell along the c-axis of the newly formed calcite. A larger unit cell is unfavorable for the substitution of Ca by smaller Mg ions in calcite. The coupled effect of (i) sulfate uptake during calcite growth and (ii) precipitation rate on DMg can be expressed by the equation DMg=0.03726-0.02345×-logrp-7-XSO4×0.004607+0.002109×-logrp-7; (−8 ≤ log(rp) ≤ −7; 0 ≤ Xso4 ≤ 2.6; T = 25 °C) and is valid for 0.01 ≤ DMg ≤ 0.04. In analogy to Mg also SO4 ions are inhibiting calcite growth, thus promoting the formation of aragonite due to adsorption phenomena and blocking of calcite surface sites. These results improve our understanding on physicochemical parameters controlling CaCO3 composition and mineral polymorphism and are discussed in their relevance for the use of magnesium and sulfate environmental proxies in natural surroundings.

    KW - Low-Mg calcite

    KW - Mg partitioning

    KW - Mineral growth rate

    KW - Sulfate incorporation

    KW - Unit cell expansion

    UR - http://www.scopus.com/inward/record.url?scp=85070269512&partnerID=8YFLogxK

    U2 - 10.1016/j.gca.2019.07.024

    DO - 10.1016/j.gca.2019.07.024

    M3 - Article

    VL - 265

    SP - 505

    EP - 519

    JO - Geochimica et Cosmochimica Acta

    JF - Geochimica et Cosmochimica Acta

    SN - 0016-7037

    ER -