Effect of Qattara Depression on gravity and geoid using unclassified digital terrain models

Hussein Abd-Elmotaal*, Norbert Kühtreiber

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The determination of the gravimetric geoid is based on the magnitude of the gravity observed at the topographic surface of the Earth. In order to satisfy Laplace’s equation, the masses between the surface of the Earth and the geoid must be removed or shifted inside the geoid. Then the gravity values have to be reduced to the geoid, forming the boundary values on the boundary surface. Gravity reduction techniques using unclassified Digital Terrain Models (DTM) usually presume that negative elevations are reserved for ocean stations. In case of Qattara Depression, the elevations are negative, i.e., below sea level. This leads to an obvious error in the topographic-isostatic reduction using, for example, TC-program employing unclassified DTM by assuming water masses filling the depression instead of air, besides computing at the non-existing sea level instead of computing at the actual negative topography. The aim of this paper is to determine the effect of Qattara Depression on gravity reduction and geoid computation, as a prototype of the effect of the unclassified land depressions on gravity reduction and geoid determination. The results show that the effect of Qattara Depression on the gravity reduction reaches 20 mGal and is restricted only to the depression area, while its effect on the geoid exceeds 1 m and has a regional effect which extends over a distance of about 1000 km.

Originalspracheenglisch
Seiten (von - bis)186-201
Seitenumfang16
FachzeitschriftStudia Geophysica et Geodaetica
Jahrgang64
DOIs
PublikationsstatusVeröffentlicht - 6 Apr 2020

ASJC Scopus subject areas

  • Geochemie und Petrologie
  • Geophysik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effect of Qattara Depression on gravity and geoid using unclassified digital terrain models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren