Effect analysis of factors based on neural network in non-contact electrostatic discharge

Huang Jun, Ruan Fangming*, Su Ming, Wang Heng, Yang Xiangdong, David Pommerenke

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Discharge parameters in non-contact electrostatic discharge(ESD) are affected by various factors, including electrode moving speed to the target, gas pressure, temperature, humidity. Mechanism of non-contact electrostatic discharge was analyzed based on a neural network model and compared to current waveform in non-contact electrostatic discharge measured with new measurement system of electrostatic discharge. Neural network method was used to adjust the weight of discharge parameters in non-contact electrostatic discharge based on discharge current waveform affected by electrode moving speed, gas pressure, temperature and humidity, so as to compare with the experiment results waveforms met to the requirement of international standard IEC61000-4-2, and to analyze the main parameters that affect discharge currents in non-contact electrostatic discharge events.

Originalspracheenglisch
TitelProceedings of 2017 IEEE 5th International Symposium on Electromagnetic Compatibility, EMC-Beijing 2017
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten1-6
Seitenumfang6
ISBN (elektronisch)9781509051854
DOIs
PublikationsstatusVeröffentlicht - 16 Jan 2018
Extern publiziertJa
Veranstaltung5th IEEE International Symposium on Electromagnetic Compatibility, EMC-Beijing 2017 - Beijing, China
Dauer: 28 Okt 201731 Okt 2017

Publikationsreihe

NameIEEE International Symposium on Electromagnetic Compatibility
Band2017-October
ISSN (Print)1077-4076
ISSN (elektronisch)2158-1118

Konferenz

Konferenz5th IEEE International Symposium on Electromagnetic Compatibility, EMC-Beijing 2017
LandChina
OrtBeijing
Zeitraum28/10/1731/10/17

ASJC Scopus subject areas

  • !!Condensed Matter Physics
  • !!Electrical and Electronic Engineering

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effect analysis of factors based on neural network in non-contact electrostatic discharge“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren