Dynamic Scheduling for Efficient Hierarchical Sparse Matrix Operations on the GPU

Andreas Derler, Rhaleb Zayer, Hans-Peter Seidel, Markus Steinberger

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung


We introduce a hierarchical sparse matrix representation (HiSparse) tailored for the graphics processing unit (GPU). The representation adapts to the local nonzero pattern at all levels of the hierarchy and uses reduced bit length for addressing the entries. This allows a smaller memory footprint than standard formats. Executing algorithms on a hierarchical structure on the GPU usually entails significant synchronization and management overhead or slowdowns due to diverging execution paths and memory access patterns. We address these issues by means of a dynamic scheduling strategy specifically designed for executing algorithms on top of a hierarchical matrix on the GPU. The evaluation of our implementation of basic linear algebra routines, suggests that our hierarchical format is competitive to highly optimized standard libraries and significantly outperforms them in the case of transpose matrix operations. The results point towards the viability of hierarchical matrix formats on massively parallel devices such as the GPU.
TitelICS '17: Proceedings of the International Conference on Supercomputing
ErscheinungsortNew York, NY, USA
Herausgeber (Verlag)ACM SIGWEB
ISBN (Print)978-1-4503-5020-4
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa
VeranstaltungInternational Conference on Supercomputing: ICS 2017 - Chicago, USA / Vereinigte Staaten
Dauer: 14 Juni 201716 Juni 2017


KonferenzInternational Conference on Supercomputing
KurztitelICS '17
Land/GebietUSA / Vereinigte Staaten


Untersuchen Sie die Forschungsthemen von „Dynamic Scheduling for Efficient Hierarchical Sparse Matrix Operations on the GPU“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren