Disjoint tree-compatible plane perfect matchings

Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz, Josef Tkadlec

Publikation: KonferenzbeitragPaperBegutachtung

Abstract

Two plane drawings of geometric graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. For a given set S of 2n points two
plane drawings of perfect matchings M1 and M2 (which do not need to be disjoint nor compatible) are disjoint tree-compatible if there exists a plane drawing of a spanning tree T on S which is
disjoint compatible to both M1 and M2.
We show that the graph of all disjoint tree-compatible perfect geometric matchings on 2n points in convex position is connected if and only if 2n ≥ 10. Moreover, in that case the diameter
of this graph is either 4 or 5, independent of n.
Originalspracheenglisch
Seiten56:1
PublikationsstatusVeröffentlicht - 2020
Veranstaltung36th European Workshop on Computational Geometry - University of Würzburg, Virtuell, Deutschland
Dauer: 16 März 202018 März 2020
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/

Konferenz

Konferenz36th European Workshop on Computational Geometry
KurztitelEuroCG 2020
Land/GebietDeutschland
OrtVirtuell
Zeitraum16/03/2018/03/20
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Disjoint tree-compatible plane perfect matchings“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren