DirectDebug: Automated Testing and Debugging of Feature Models

V. -M. Le, A. Felfernig, M. Uta, D. Benavides, J. Galindo, T. N. T. Tran

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Variability models (e.g., feature models) are a common way for the representation of variabilities and commonalities of software artifacts. Such models can be translated to a logical representation and thus allow different operations for quality assurance and other types of model property analysis. Specifically, complex and often large-scale feature models can become faulty, i.e., do not represent the expected variability properties of the underlying software artifact. In this paper, we introduce DirectDebug which is a direct diagnosis approach to the automated testing and debugging of variability models. The algorithm helps software engineers by supporting an automated identification of faulty constraints responsible for an unintended behavior of a variability model. This approach can significantly decrease development and maintenance efforts for such models.
Originalspracheenglisch
Titel2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)
Seiten81-85
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 7 Mai 2021
Veranstaltung2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results - Virtuell, Spanien
Dauer: 25 Mai 202128 Mai 2021
https://conf.researchr.org/track/icse-2021/icse-2021-New-Ideas-and-Emerging-Results?

Konferenz

Konferenz2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results
KurztitelICSE-NIER 2021
LandSpanien
OrtVirtuell
Zeitraum25/05/2128/05/21
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „DirectDebug: Automated Testing and Debugging of Feature Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren