Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study

Cyrill Grengg*, Gregor J.G. Gluth, Florian Mittermayr, Neven Ukrainczyk, Marko Bertmer, Ana Guilherme Buzanich, Martin Radtke, Albrecht Leis, Martin Dietzel

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

In this study, a multi-proxy approach combining 29Si, 27Al and 1H MAS-NMR, FEG-EPMA, XANES at the Cu K-edge and XRD analytics with hydrochemical tools such as ICP-OES analyses, oxygen-isotope signatures, and thermodynamic modelling was applied to K-silicate-activated metakaolin specimens - with and without CuSO4·5H2O addition - exposed to sulfuric acid at pH = 2 for 35 days. The results revealed a multistage deterioration mechanism governed by (i) acid diffusion, (ii) leaching of K-A-S-H, (iii) microstructural damage related to precipitation of expansive (K,Ca,Al)-sulfate-hydrate phases (iv) complete dissolution of the K-A-S-H framework, (v) and formation of silica gel in the outermost corroded regions. Copper ions were mainly located in layered spertiniite-chrysocolla-like phases in the as-cured materials. The results demonstrate an overall negative effect of Cu addition on chemical material durability, implying that the reported higher durability of Cu-doped AAM in biocorrosion environments can be best explained by bacteriostatic effects.

Originalspracheenglisch
Aufsatznummer106373
FachzeitschriftCement and Concrete Research
Jahrgang142
DOIs
PublikationsstatusVeröffentlicht - Apr. 2021

ASJC Scopus subject areas

  • Bauwesen
  • Werkstoffwissenschaften (insg.)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren