Detection, segmentation, simulation and visualization of aortic dissections: A review

Antonio Pepe*, Jianning Li*, Malte Rolf-Pissarczyk, Christina Schwarz-Gsaxner, Xiaojun Chen, Gerhard Holzapfel, Jan Egger*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Aortic dissection (AD) is a condition of the main artery of the human body, resulting in the formation of a new flow channel, or false lumen. The disease is usually diagnosed with a computed tomography angiography scan during the acute phase. A better understanding of the causes of AD requires knowledge of the aortic geometry (segmentation), including the true and false lumina, which is very time-consuming to reconstruct when performed manually on a slice-by-slice basis. Hence, different automatic and semi-automatic medical image analysis approaches have been proposed for this task over the last years. In this review, we present and discuss these computing techniques used to segment dissected aortas, also in regard to the detection and visualization of clinically relevant information and features from dissected aortas for customized patient-specific treatments.

Originalspracheenglisch
Aufsatznummer101773
FachzeitschriftMedical Image Analysis
Jahrgang65
DOIs
PublikationsstatusVeröffentlicht - 2020

ASJC Scopus subject areas

  • !!Radiological and Ultrasound Technology
  • !!Health Informatics
  • !!Radiology Nuclear Medicine and imaging
  • !!Computer Vision and Pattern Recognition
  • !!Computer Graphics and Computer-Aided Design

Fingerprint Untersuchen Sie die Forschungsthemen von „Detection, segmentation, simulation and visualization of aortic dissections: A review“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren