Design Space Exploration of SABER in 65nm ASIC

Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, Samuel Pagliarini

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung


This paper presents a design space exploration for SABER, one of the finalists in NIST's quantum-resistant public-key cryptographic standardization effort. Our design space exploration targets a 65nm ASIC platform and has resulted in the evaluation of 6 different architectures. Our exploration is initiated by setting a baseline architecture which is ported from FPGA. In order to improve the clock frequency (the primary goal in our exploration), we have employed several optimizations: (i) use of compiled memories in a 'smart synthesis' fashion, (ii) pipelining, and (iii) logic sharing between SABER building blocks. The most optimized architecture utilizes four register files, achieves a remarkable clock frequency of 1GHz while only requiring an area of 0.314mm2. Moreover, physical synthesis is carried out for this architecture and a tapeout-ready layout is presented. The estimated dynamic power consumption of the high-frequency architecture is approximately 184mW for key generation and 187mW for encapsulation or decapsulation operations. These results strongly suggest that our optimized accelerator architecture is well suited for high-speed cryptographic applications.
TitelASHES '21: Proceedings of the 5th Workshop on Attacks and Solutions in Hardware Security
ErscheinungsortNew York, NY
Herausgeber (Verlag)Association of Computing Machinery
ISBN (elektronisch)978-1-4503-8662-3
PublikationsstatusVeröffentlicht - Nov. 2021
Veranstaltung5th Workshop on Attacks and Solutions in Hardware Security: ASHES 2021 - Seoul, Hybrider Event, Südkorea
Dauer: 19 Nov. 2021 → …


Konferenz5th Workshop on Attacks and Solutions in Hardware Security
KurztitelASHES 2021
OrtHybrider Event
Zeitraum19/11/21 → …


Untersuchen Sie die Forschungsthemen von „Design Space Exploration of SABER in 65nm ASIC“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren