Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection

Marina Codari*, Antonio Pepe, Gabriel Mistelbauer, D. Mastrodicasa, S. Walters, M. J. Willemink, D. Fleischmann

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Accurate localization of the aortic annulus is key to several imaging tasks, like cross-sectional aortic valve plane estimation, aortic root segmentation, and annulus diameter measurements. In this project, we propose an end-to-end trainable deep reinforcement learning (DRL) algorithm aimed at identification of the aortic annulus in patients with aortic dissection. We trained 5 different agents on a dataset of 75 CT scans from 66 patients following a sequential model-upgrading strategy. We evaluated the effect of performing different image preprocessing steps, adding batch normalization and regularization layers, and changing terminal state definition. At each step of this sequential process, the model performance has been evaluated on a validation sample composed of 24 CTA scans from 24 independent patients. Localization accuracy was defined as the Euclidean distance between estimated and target aortic annulus locations. Best model results show a median localization error equal to 2.98 mm with an interquartile range equal to [2.25, 3.81] mm, and a failure rate (i.e., percentage of samples with localization error in validation data. We proved the feasibility of DRL application for aortic annulus localization in CTA images of patients with aortic dissection, which are characterized by a large variability in aortic morphology and image quality. Nevertheless, further improvements are needed to reach expert-human level performance.

Originalspracheenglisch
TitelThoracic Image Analysis - Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Proceedings
UntertitelSecond International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
Redakteure/-innenJens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Sarah Gerard, Bianca Lassen-Schmidt, Colin Jacobs, Reinhard Beichel, Kensaku Mori
ErscheinungsortCham
Herausgeber (Verlag)Springer
Seiten94-105
Seitenumfang12
ISBN (elektronisch)978-3-030-62469-9
ISBN (Print)978-3-030-62468-2
DOIs
PublikationsstatusVeröffentlicht - 1 Jan 2020
Veranstaltung2nd International Workshop on Thoracic Image Analysis - Virtuell, Peru
Dauer: 8 Okt 20208 Okt 2020

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12502 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz2nd International Workshop on Thoracic Image Analysis
KurztitelTIA 2020
Land/GebietPeru
OrtVirtuell
Zeitraum8/10/208/10/20

ASJC Scopus subject areas

  • Theoretische Informatik
  • Informatik (insg.)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren