Decoding Movements of the Upper Limb from EEG

Publikation: KonferenzbeitragPosterForschung

Abstract

A neuroprosthesis can restore movement functions of persons with spinal cord injury. It benefits from a brain-computer interface (BCI) with a high number of control classes. However, classical sensorimotor rhythm-based BCIs can often only provide less than 3 classes, and new types of BCIs need to be developed. We investigated whether low-frequency time-domain signals (i.e. movement-related cortical potentials) can be used to classify hand/arm movements of the same limb. A BCI based on attempted movements may be used to control a neuroprosthesis more naturally and provide a higher number of control classes.
Originalspracheenglisch
PublikationsstatusVeröffentlicht - 20 Jun 2017
VeranstaltungcuttingEEG - Glasgow, Großbritannien / Vereinigtes Königreich
Dauer: 19 Jun 201722 Jun 2017

Workshop

WorkshopcuttingEEG
LandGroßbritannien / Vereinigtes Königreich
OrtGlasgow
Zeitraum19/06/1722/06/17

    Fingerprint

Fields of Expertise

  • Human- & Biotechnology

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Dieses zitieren

Ofner, P., Schwarz, A., Pereira, J., & Müller-Putz, G. (2017). Decoding Movements of the Upper Limb from EEG. Postersitzung präsentiert bei cuttingEEG, Glasgow, Großbritannien / Vereinigtes Königreich.