De-Identification in Learning Analytics

Mohammad Khalil, Martin Ebner

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Learning analytics has reserved its position as an important field in the educational sector. However, the large-scale collection, processing, and analyzing of data has steered the wheel beyond the borders to face an abundance of ethical breaches and constraints. Revealing learners’ personal information and attitudes, as well as their activities, are major aspects that lead to identifying individuals personally. Yet, de-identification can keep the process of learning analytics in progress while reducing the risk of inadvertent disclosure of learners’ identities. In this paper, the authors discuss de-identification methods in the context of the learning environment and propose a first prototype conceptual approach that describes the combination of anonymization strategies and learning analytics techniques.
Originalspracheenglisch
Seiten (von - bis)129-138
FachzeitschriftJournal of Learning Analytics
Jahrgang3
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 23 Apr 2016

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „De-Identification in Learning Analytics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren