Crysal Plasticity Finite Element Simulations based on Continuum Dislocation Dynamics

Alireza Ebrahimi, Thomas Hochrainer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Plastic deformation of crystalline materials is the result of the motion and interaction of dislocations. Continuum dislocation dynamics (CDD) defines flux-type evolution equations of dislocation variables which can capture the kinematics of moving curved dislocations. Coupled with Orowan's law, which connects the plastic shear rate to the dislocation flux, CDD defines a dislocation density based material law for crystal plasticity. In the current work we provide simulations of a micro-bending experiment of a single crystal and compare the results qualitatively to those from discrete dislocation simulations from the literature. We show that CDD reproduces salient features from discrete dislocation simulations regarding the stress distribution, the dislocation density and the accumulated plastic shear, which would be hard to obtain from more traditional crystal plasticity constitutive laws. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Originalspracheenglisch
TitelProceedings in Applied Mathematics and Mechanics PAMM
Seiten325-326
Band16
Auflage1
DOIs
PublikationsstatusVeröffentlicht - 2016

ASJC Scopus subject areas

  • !!Materials Science(all)

Fingerprint Untersuchen Sie die Forschungsthemen von „Crysal Plasticity Finite Element Simulations based on Continuum Dislocation Dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren

    Ebrahimi, A., & Hochrainer, T. (2016). Crysal Plasticity Finite Element Simulations based on Continuum Dislocation Dynamics. in Proceedings in Applied Mathematics and Mechanics PAMM (1 Aufl., Band 16, S. 325-326) https://doi.org/10.1002/pamm.201610151