Convergence of subdivision schemes on Riemannian manifolds with nonpositive sectional curvature

Svenja Hüning, Johannes Wallner

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

This paper studies well-definedness and convergence of subdivision schemes which operate on Riemannian manifolds with nonpositive sectional curvature. These schemes are constructed from linear ones by replacing affine averages by the Riemannian centre of mass. In contrast to previous work, we consider schemes without any sign restriction on the mask, and our results apply to all input data. We also analyse the Hölder continuity of the resulting limit curves. Our main result states that if the norm of the derived scheme (resp. iterated derived scheme) is smaller than the corresponding dilation factor then the adapted scheme converges. In this way, we establish that convergence of a linear subdivision scheme is almost equivalent to convergence of its nonlinear manifold counterpart.
Originalspracheenglisch
Seiten (von - bis)1689–1709
Seitenumfang21
FachzeitschriftAdvances in Computational Mathematics
Jahrgang45
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Jun 2019

Fingerprint Untersuchen Sie die Forschungsthemen von „Convergence of subdivision schemes on Riemannian manifolds with nonpositive sectional curvature“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren