Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites

Weibin Liang, Raffaele Ricco, Natasha K. Maddigan, Robert P. Dickinson, Huoshu Xu, Qiaowei Li, Christopher J. Sumby, Stephen G. Bell, Paolo Falcaro, Christian J. Doonan

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic imidazolate framework (ZIF) composites are likely dependent on the localization of the biomolecule and the topology of the mineralized ZIF coating. Herein, we identify reaction conditions to reliably yield the porous ZIF-8 sodalite topology (high ZIF-8 precursor concentrations; high 2-methylimidazole:Zn2+ ratios) in preference to other more dense phases. Furthermore, protocols to universally prepare biocomposites with a range of biomacromolecules are canvassed. Through the use of fluorophore-tagged proteins and confocal laser scanning microscopy (CLSM), we further establish the positioning of biomolecules within ZIF-8 crystals. CLSM reveals subsurface localization with fluorescein-tagged bovine serum albumin (BSA) or full encapsulation with rhodamine B-tagged BSA. These observations allowed us to demonstrate that core-shell ZIF-8 growth strategies afford complete encapsulation with varying thicknesses of potentially active biocomposite or protective ZIF-8. The demonstrated control over ZIF topology (enabling mass transport) and biomacromolecule localization is critical for applications of MOF biocomposites in catalysis.

Originalspracheenglisch
Seiten (von - bis)1069-1077
Seitenumfang9
FachzeitschriftChemistry of Materials
Jahrgang30
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 13 Feb 2018

Fingerprint

Spatial distribution
rhodamine B
Topology
Biomolecules
Bovine Serum Albumin
Proteins
Encapsulation
Microscopic examination
Scanning
Fluorophores
Lasers
Fluorescein
Catalysis
Mass transfer
Coatings
Crystals
Composite materials
2-methylimidazole
crystal-8

ASJC Scopus subject areas

  • !!Chemistry(all)
  • !!Chemical Engineering(all)
  • !!Materials Chemistry

Dies zitieren

Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. / Liang, Weibin; Ricco, Raffaele; Maddigan, Natasha K.; Dickinson, Robert P.; Xu, Huoshu; Li, Qiaowei; Sumby, Christopher J.; Bell, Stephen G.; Falcaro, Paolo; Doonan, Christian J.

in: Chemistry of Materials, Jahrgang 30, Nr. 3, 13.02.2018, S. 1069-1077.

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Liang, Weibin ; Ricco, Raffaele ; Maddigan, Natasha K. ; Dickinson, Robert P. ; Xu, Huoshu ; Li, Qiaowei ; Sumby, Christopher J. ; Bell, Stephen G. ; Falcaro, Paolo ; Doonan, Christian J. / Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. in: Chemistry of Materials. 2018 ; Jahrgang 30, Nr. 3. S. 1069-1077.
@article{68e4590c79394d55bdba453db6227cc5,
title = "Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites",
abstract = "The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic imidazolate framework (ZIF) composites are likely dependent on the localization of the biomolecule and the topology of the mineralized ZIF coating. Herein, we identify reaction conditions to reliably yield the porous ZIF-8 sodalite topology (high ZIF-8 precursor concentrations; high 2-methylimidazole:Zn2+ ratios) in preference to other more dense phases. Furthermore, protocols to universally prepare biocomposites with a range of biomacromolecules are canvassed. Through the use of fluorophore-tagged proteins and confocal laser scanning microscopy (CLSM), we further establish the positioning of biomolecules within ZIF-8 crystals. CLSM reveals subsurface localization with fluorescein-tagged bovine serum albumin (BSA) or full encapsulation with rhodamine B-tagged BSA. These observations allowed us to demonstrate that core-shell ZIF-8 growth strategies afford complete encapsulation with varying thicknesses of potentially active biocomposite or protective ZIF-8. The demonstrated control over ZIF topology (enabling mass transport) and biomacromolecule localization is critical for applications of MOF biocomposites in catalysis.",
author = "Weibin Liang and Raffaele Ricco and Maddigan, {Natasha K.} and Dickinson, {Robert P.} and Huoshu Xu and Qiaowei Li and Sumby, {Christopher J.} and Bell, {Stephen G.} and Paolo Falcaro and Doonan, {Christian J.}",
year = "2018",
month = "2",
day = "13",
doi = "10.1021/acs.chemmater.7b04977",
language = "English",
volume = "30",
pages = "1069--1077",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "ACS Publications",
number = "3",

}

TY - JOUR

T1 - Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites

AU - Liang, Weibin

AU - Ricco, Raffaele

AU - Maddigan, Natasha K.

AU - Dickinson, Robert P.

AU - Xu, Huoshu

AU - Li, Qiaowei

AU - Sumby, Christopher J.

AU - Bell, Stephen G.

AU - Falcaro, Paolo

AU - Doonan, Christian J.

PY - 2018/2/13

Y1 - 2018/2/13

N2 - The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic imidazolate framework (ZIF) composites are likely dependent on the localization of the biomolecule and the topology of the mineralized ZIF coating. Herein, we identify reaction conditions to reliably yield the porous ZIF-8 sodalite topology (high ZIF-8 precursor concentrations; high 2-methylimidazole:Zn2+ ratios) in preference to other more dense phases. Furthermore, protocols to universally prepare biocomposites with a range of biomacromolecules are canvassed. Through the use of fluorophore-tagged proteins and confocal laser scanning microscopy (CLSM), we further establish the positioning of biomolecules within ZIF-8 crystals. CLSM reveals subsurface localization with fluorescein-tagged bovine serum albumin (BSA) or full encapsulation with rhodamine B-tagged BSA. These observations allowed us to demonstrate that core-shell ZIF-8 growth strategies afford complete encapsulation with varying thicknesses of potentially active biocomposite or protective ZIF-8. The demonstrated control over ZIF topology (enabling mass transport) and biomacromolecule localization is critical for applications of MOF biocomposites in catalysis.

AB - The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic imidazolate framework (ZIF) composites are likely dependent on the localization of the biomolecule and the topology of the mineralized ZIF coating. Herein, we identify reaction conditions to reliably yield the porous ZIF-8 sodalite topology (high ZIF-8 precursor concentrations; high 2-methylimidazole:Zn2+ ratios) in preference to other more dense phases. Furthermore, protocols to universally prepare biocomposites with a range of biomacromolecules are canvassed. Through the use of fluorophore-tagged proteins and confocal laser scanning microscopy (CLSM), we further establish the positioning of biomolecules within ZIF-8 crystals. CLSM reveals subsurface localization with fluorescein-tagged bovine serum albumin (BSA) or full encapsulation with rhodamine B-tagged BSA. These observations allowed us to demonstrate that core-shell ZIF-8 growth strategies afford complete encapsulation with varying thicknesses of potentially active biocomposite or protective ZIF-8. The demonstrated control over ZIF topology (enabling mass transport) and biomacromolecule localization is critical for applications of MOF biocomposites in catalysis.

UR - http://www.scopus.com/inward/record.url?scp=85042055507&partnerID=8YFLogxK

U2 - 10.1021/acs.chemmater.7b04977

DO - 10.1021/acs.chemmater.7b04977

M3 - Article

VL - 30

SP - 1069

EP - 1077

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 3

ER -