Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem

Rob Kusner, Wöden Kusner, Jeffrey C. Lagarias, Senya Shlosman

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

Abstract

The problem of twelve spheres is to understand, as a function of r ϵ (0,rmax(12)], the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on 3 ≤ N ≤ 14. The problem of determining the maximal radius rmax(N) is a version of the Tammes problem, to which László Fejes Tóth made significant contributions.

Originalspracheenglisch
TitelBolyai Society Mathematical Studies
Herausgeber (Verlag)Springer Berlin - Heidelberg
Seiten219-277
Seitenumfang59
DOIs
PublikationsstatusVeröffentlicht - 1 Jan 2018

Publikationsreihe

NameBolyai Society Mathematical Studies
Band27
ISSN (Print)1217-4696

Fingerprint

Configuration Space
Radius
Unit Sphere
Materials Science
Materials science
Physics
Topology
Motion
Geometry

Schlagwörter

    ASJC Scopus subject areas

    • !!Computational Theory and Mathematics
    • Angewandte Mathematik

    Dies zitieren

    Kusner, R., Kusner, W., Lagarias, J. C., & Shlosman, S. (2018). Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem. in Bolyai Society Mathematical Studies (S. 219-277). (Bolyai Society Mathematical Studies; Band 27). Springer Berlin - Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_10

    Configuration spaces of equal spheres touching a given sphere : The twelve spheres problem. / Kusner, Rob; Kusner, Wöden; Lagarias, Jeffrey C.; Shlosman, Senya.

    Bolyai Society Mathematical Studies. Springer Berlin - Heidelberg, 2018. S. 219-277 (Bolyai Society Mathematical Studies; Band 27).

    Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

    Kusner, R, Kusner, W, Lagarias, JC & Shlosman, S 2018, Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem. in Bolyai Society Mathematical Studies. Bolyai Society Mathematical Studies, Bd. 27, Springer Berlin - Heidelberg, S. 219-277. https://doi.org/10.1007/978-3-662-57413-3_10
    Kusner R, Kusner W, Lagarias JC, Shlosman S. Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem. in Bolyai Society Mathematical Studies. Springer Berlin - Heidelberg. 2018. S. 219-277. (Bolyai Society Mathematical Studies). https://doi.org/10.1007/978-3-662-57413-3_10
    Kusner, Rob ; Kusner, Wöden ; Lagarias, Jeffrey C. ; Shlosman, Senya. / Configuration spaces of equal spheres touching a given sphere : The twelve spheres problem. Bolyai Society Mathematical Studies. Springer Berlin - Heidelberg, 2018. S. 219-277 (Bolyai Society Mathematical Studies).
    @inbook{92cf3d547df348b5bd4b3b15635196e0,
    title = "Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem",
    abstract = "The problem of twelve spheres is to understand, as a function of r ϵ (0,rmax(12)], the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on 3 ≤ N ≤ 14. The problem of determining the maximal radius rmax(N) is a version of the Tammes problem, to which L{\'a}szl{\'o} Fejes T{\'o}th made significant contributions.",
    keywords = "Configuration spaces, Constrained optimization, Criticality, Discrete geometry, Materials science, Morse theory",
    author = "Rob Kusner and W{\"o}den Kusner and Lagarias, {Jeffrey C.} and Senya Shlosman",
    year = "2018",
    month = "1",
    day = "1",
    doi = "10.1007/978-3-662-57413-3_10",
    language = "English",
    series = "Bolyai Society Mathematical Studies",
    publisher = "Springer Berlin - Heidelberg",
    pages = "219--277",
    booktitle = "Bolyai Society Mathematical Studies",

    }

    TY - CHAP

    T1 - Configuration spaces of equal spheres touching a given sphere

    T2 - The twelve spheres problem

    AU - Kusner, Rob

    AU - Kusner, Wöden

    AU - Lagarias, Jeffrey C.

    AU - Shlosman, Senya

    PY - 2018/1/1

    Y1 - 2018/1/1

    N2 - The problem of twelve spheres is to understand, as a function of r ϵ (0,rmax(12)], the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on 3 ≤ N ≤ 14. The problem of determining the maximal radius rmax(N) is a version of the Tammes problem, to which László Fejes Tóth made significant contributions.

    AB - The problem of twelve spheres is to understand, as a function of r ϵ (0,rmax(12)], the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on 3 ≤ N ≤ 14. The problem of determining the maximal radius rmax(N) is a version of the Tammes problem, to which László Fejes Tóth made significant contributions.

    KW - Configuration spaces

    KW - Constrained optimization

    KW - Criticality

    KW - Discrete geometry

    KW - Materials science

    KW - Morse theory

    UR - http://www.scopus.com/inward/record.url?scp=85056318530&partnerID=8YFLogxK

    U2 - 10.1007/978-3-662-57413-3_10

    DO - 10.1007/978-3-662-57413-3_10

    M3 - Chapter

    T3 - Bolyai Society Mathematical Studies

    SP - 219

    EP - 277

    BT - Bolyai Society Mathematical Studies

    PB - Springer Berlin - Heidelberg

    ER -