Computing and Estimating the Reaching Time of the Super-Twisting Algorithm

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

The super-twisting algorithm is a second-order sliding-mode algorithm that may be used either for control or for observation purposes. An important performance characteristic of this algorithm is the so-called reaching or convergence time, the time it takes for the controller to reach the sliding surface or for the estimates to converge. In this chapter, three techniques are discussed to estimate, i.e., upper bound, and in some cases even compute this reaching time in the presence of additive perturbations, which are Hölder continuous in the state or Lipschitz continuous in the time. The first is obtained from an analytic computation of the unperturbed reaching time; the second is based on a family of quadratic Lyapunov functions; and the third is derived from a necessary and sufficient stability criterion. For each approach, the range of permissible perturbations, its asymptotic properties with respect to parameters and perturbation bounds, and, when applicable, the selection of parameters are discussed. Numerical comparisons illustrate the results obtained with each approach.

Originalspracheenglisch
TitelVariable-Structure Systems and Sliding-Mode Control
UntertitelFrom Theory to Practice
Herausgeber (Verlag)Springer International
Kapitel3
Seiten73-123
Seitenumfang51
ISBN (elektronisch)978-3-030-36621-6
ISBN (Print)978-3-030-36620-9
DOIs
PublikationsstatusVeröffentlicht - 11 Feb 2020

Publikationsreihe

NameStudies in Systems, Decision and Control
Band271
ISSN (Print)2198-4182
ISSN (elektronisch)2198-4190

ASJC Scopus subject areas

  • !!Computer Science (miscellaneous)
  • !!Control and Optimization
  • !!Decision Sciences (miscellaneous)
  • !!Economics, Econometrics and Finance (miscellaneous)
  • !!Control and Systems Engineering
  • Fahrzeugbau
  • !!Social Sciences (miscellaneous)

Fingerprint Untersuchen Sie die Forschungsthemen von „Computing and Estimating the Reaching Time of the Super-Twisting Algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren