Compressed linear algebra for declarative large-scale machine learning

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, Berthold Reinwald

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Large-scale Machine Learning (ML) algorithms are often iterative, using repeated read-only data access and I/O-bound matrix-vector multiplications. Hence, it is crucial for performance to fit the data into single-node or distributed main memory to enable fast matrix-vector operations. General-purpose compression struggles to achieve both good compression ratios and fast decompression for block-wise uncompressed operations. Therefore, we introduce Compressed Linear Algebra (CLA) for lossless matrix compression. CLA encodes matrices with lightweight, value-based compression techniques and executes linear algebra operations directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show good compression ratios and operations performance close to the uncompressed case, which enables fitting larger datasets into available memory. We thereby obtain significant end-to-end performance improvements.
Originalspracheenglisch
Seiten (von - bis)83-91
FachzeitschriftCommunications of the ACM
Jahrgang62
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Compressed linear algebra for declarative large-scale machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren