Co-factor demand and regeneration in the enzymatic one-step reduction of carboxylates to aldehydes in cell-free systems

Gernot Strohmeier*, Anna Schwarz, Jennifer N. Andexer, Margit Winkler

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Addressing the challenges associated with the development of in vitro biocatalytic carboxylate reductions for potential applications, important aspects of the co-factor regeneration systems and strategies for minimizing over-reduction were investigated. The ATP recycling can be performed with similarly high efficiency exploiting the polyphosphate source by combining Meiothermus ruber polyphosphate kinase and adenylate kinase or with Sinorhizobium meliloti polyphosphate kinase instead of the latter. Carboxylate reductions with the enzyme candidates used in this work allow operating at co-factor concentrations of adenosine 5'-triphosphate and β-nicotinamide adenine dinucleotide 2'-phosphate of 100 µM and, thereby, reducing the amounts of alcohols formed by side activities in the enzyme preparations. This study confirmed the expected benefits of carboxylic acid reductases in chemoselectively reducing the carboxylates to the corresponding aldehydes while leaving reductively-sensitive nitro, ester and cyano groups intact.
Originalspracheenglisch
Seiten (von - bis)202-207
Seitenumfang6
FachzeitschriftJournal of Biotechnology
Jahrgang307
DOIs
PublikationsstatusVeröffentlicht - 10 Jan 2020

ASJC Scopus subject areas

  • !!Applied Microbiology and Biotechnology
  • Bioengineering
  • Biotechnology

Fields of Expertise

  • Human- & Biotechnology

Fingerprint Untersuchen Sie die Forschungsthemen von „Co-factor demand and regeneration in the enzymatic one-step reduction of carboxylates to aldehydes in cell-free systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren