Cluster Purging: Efficient Outlier Detection based on Rate-Distortion Theory

Maximilian Toller, Bernhard Geiger, Roman Kern

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


Rate-distortion theory-based outlier detection builds upon the rationale that a good data compression will encode outliers with unique symbols. Based on this rationale, we propose Cluster Purging, which is an extension of clustering-based outlier detection. This extension allows one to assess the representivity of clusterings, and to find data that are best represented by individual unique clusters. We propose two efficient algorithms for performing Cluster Purging, one being parameter-free, while the other algorithm has a parameter that controls representivity estimations, allowing it to be tuned in supervised setups. In an experimental evaluation, we show that Cluster Purging improves upon outliers detected from raw clusterings, and that Cluster Purging competes strongly against state-of-the-art alternatives.
FachzeitschriftIEEE Transactions on Knowledge and Data Engineering
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 10 Aug. 2021


Untersuchen Sie die Forschungsthemen von „Cluster Purging: Efficient Outlier Detection based on Rate-Distortion Theory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren