Circular automata synchronize with high probability

Publikation: Beitrag in einer FachzeitschriftArtikelForschung

Abstract

In this paper we prove that a uniformly distributed random circular automaton $\mathcal{A}_n$ of order $n$ synchronizes with high probability (whp). More precisely, we prove that $$ \mathbb{P}\left[\mathcal{A}_n \text{ synchronizes}\right] = 1- O\left(\frac{1}{n}\right). $$ The main idea of the proof is to translate the synchronization problem into properties of a random matrix; these properties are then handled with tools of the probabilistic method. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.
Originalspracheenglisch
Seitenumfang19
FachzeitschriftarXiv.org e-Print archive
PublikationsstatusVeröffentlicht - 6 Jun 2019

Fingerprint

Automata
Synchronization
Circulant Graph
Chromatic Polynomial
Probabilistic Methods
Random Matrices
Upper bound
Text

Schlagwörter

    Dies zitieren

    Circular automata synchronize with high probability. / Aistleitner, Christoph; D'Angeli, Daniele; Gutierrez, Abraham; Rodaro, Emanuele; Rosenmann, Amnon.

    in: arXiv.org e-Print archive, 06.06.2019.

    Publikation: Beitrag in einer FachzeitschriftArtikelForschung

    @article{d81a9faee40a4c1ba259ceb57f484bbf,
    title = "Circular automata synchronize with high probability",
    abstract = "In this paper we prove that a uniformly distributed random circular automaton $\mathcal{A}_n$ of order $n$ synchronizes with high probability (whp). More precisely, we prove that $$ \mathbb{P}\left[\mathcal{A}_n \text{ synchronizes}\right] = 1- O\left(\frac{1}{n}\right). $$ The main idea of the proof is to translate the synchronization problem into properties of a random matrix; these properties are then handled with tools of the probabilistic method. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.",
    keywords = "math.CO",
    author = "Christoph Aistleitner and Daniele D'Angeli and Abraham Gutierrez and Emanuele Rodaro and Amnon Rosenmann",
    year = "2019",
    month = "6",
    day = "6",
    language = "English",
    journal = "arXiv.org e-Print archive",
    publisher = "Cornell University Library",

    }

    TY - JOUR

    T1 - Circular automata synchronize with high probability

    AU - Aistleitner, Christoph

    AU - D'Angeli, Daniele

    AU - Gutierrez, Abraham

    AU - Rodaro, Emanuele

    AU - Rosenmann, Amnon

    PY - 2019/6/6

    Y1 - 2019/6/6

    N2 - In this paper we prove that a uniformly distributed random circular automaton $\mathcal{A}_n$ of order $n$ synchronizes with high probability (whp). More precisely, we prove that $$ \mathbb{P}\left[\mathcal{A}_n \text{ synchronizes}\right] = 1- O\left(\frac{1}{n}\right). $$ The main idea of the proof is to translate the synchronization problem into properties of a random matrix; these properties are then handled with tools of the probabilistic method. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.

    AB - In this paper we prove that a uniformly distributed random circular automaton $\mathcal{A}_n$ of order $n$ synchronizes with high probability (whp). More precisely, we prove that $$ \mathbb{P}\left[\mathcal{A}_n \text{ synchronizes}\right] = 1- O\left(\frac{1}{n}\right). $$ The main idea of the proof is to translate the synchronization problem into properties of a random matrix; these properties are then handled with tools of the probabilistic method. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.

    KW - math.CO

    M3 - Article

    JO - arXiv.org e-Print archive

    JF - arXiv.org e-Print archive

    ER -